On N-algebraic Parikh slender power series
نویسنده
چکیده
In a recent paper we introduced Parikh slender languages and series as a generalization of slender languages de ned and studied by Andra siu, Dassow, P aun and Salomaa. Results concerning Parikh slender series can be applied in ambiguity proofs of context-free languages. In this paper an algorithm is presented for deciding whether or not a given N-algebraic series is Parikh slender. Category: F.4.3
منابع مشابه
HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملA Decision Method for Parikh Slenderness of Context-free Languages
In a recent paper we introduced Parikh slender languages as a generalization of slender languages defined and studied by AndraSiu, Dassow, Pgun and Salomaa. Results concerning Pa&h slender languages can be applied in ambiguity proofs of context-free languages. In this paper an algorithm is presented for deciding whether or not a given context-free language is Parikh slender.
متن کاملOn Parikh slender context-free languages
In a recent paper we de ned and studied Parikh slender languages and showed that they can be used in simplifying ambiguity proofs of context-free languages. In this paper Parikh slender context-free languages are characterized. The characterization has diverse applications. TUCS Research Group Mathematical Structures of Computer Science
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 3 شماره
صفحات -
تاریخ انتشار 1997