On N-algebraic Parikh slender power series

نویسنده

  • Juha Honkala
چکیده

In a recent paper we introduced Parikh slender languages and series as a generalization of slender languages de ned and studied by Andra siu, Dassow, P aun and Salomaa. Results concerning Parikh slender series can be applied in ambiguity proofs of context-free languages. In this paper an algorithm is presented for deciding whether or not a given N-algebraic series is Parikh slender. Category: F.4.3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

A Decision Method for Parikh Slenderness of Context-free Languages

In a recent paper we introduced Parikh slender languages as a generalization of slender languages defined and studied by AndraSiu, Dassow, Pgun and Salomaa. Results concerning Pa&h slender languages can be applied in ambiguity proofs of context-free languages. In this paper an algorithm is presented for deciding whether or not a given context-free language is Parikh slender.

متن کامل

On Parikh slender context-free languages

In a recent paper we de ned and studied Parikh slender languages and showed that they can be used in simplifying ambiguity proofs of context-free languages. In this paper Parikh slender context-free languages are characterized. The characterization has diverse applications. TUCS Research Group Mathematical Structures of Computer Science

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1997